What do students think of their learning?

Student voice is something that I really value. In the perfect world students would have a complete say in what they learn and how they learn. But in the meantime the confines of syllabuses I still like to give my students a say in the learning that’s happening in the classroom. What things do they like learning about? How do they like to learn? Is what they are learning too difficult or too easy? What parts of the classroom learning design do they think needs improvement? What can I do as their teacher to make learning better for them?

My Year 8 class gave their feedback on their learning this week as Term 2 in NSW, Australia drew to a close. Here’s what they thought:

infographic of evaluation results

 

The main topic we studied in Term 2 was called Water Water Everywhere, which is essentially using the particle model to explain the properties of solids, liquids and gases and why one state of matter changes to another when energy is added or removed from the system. This topic is probably one of the most difficult and often disengaging topic for students because it involves an abstract concept. The particle model lends itself to a lot of student misconceptions and is generally something students find difficult to understand, which I have discussed in a previous post. To overcome this the learning was designed so to involve lots of interesting hands-on experiences such as making quicksand and using technology for students to increase their conceptual understanding and allow their misconceptions to be picked more and addressed more frequently.

From the students’ feedback, scientific metalanguage was emphasised as an area they thought needed improvement, so next topic there will be more activities that emphasise the use of scientific metalanguage.

What I also find interesting is students’ decisions on whether they will continue with Science in the post-compulsory years of schooling. What I find particularly interesting is that quite a few students who consistently say they find the learning in Year 8 science fun, interesting and related to the real world, do not want to study science in Year 11 & 12 because their chosen career does not need science. There seems to be a perception with my Year 8s that science in Year 11 and 12 are for people who want to be scientists. This perception is also found in evaluations completed by Year 9 and 10 students.

So one of my challenges for the rest of the year is how am I going to design the learning for these students value science and view it as important to learn, even though they aren’t going to pursue a career in science.

Hold it right there. We learn about black holes in Year 10, not in Year 8

This term my Year 8 class has been running Science News. Science News is where each student in the class takes turns in presenting a science news item that they have found interesting. They have to showcase  the science news item in a two minute presentation. The purpose of Science News is to expose students to the latest discoveries in science. I wanted them to know that science is everywhere.

However, Science News has also taught me new things and not just scientific things. One Science News item challenged how I was designing my learning for my students and how our education system designs learning for our students. Daniel talked about new discoveries on black holes. You can read Daniel’s speech to the class here. Right after Daniel finished his speech, half of the class’ hands shot up with questions.

“What exactly are black holes?”

“What happens when you go into a black hole?”

“I heard that time slows down when go inside a black hole. Is that true?”

“If we can’t see a black hole. How do we know it is there?”

“What is a light year?”

I was really happy that my students were so enthusiastic about learning more on black holes. So what did I do? I spent about 5 minutes skimming through the basics of gravity, dark matter and the speed of light and then I said, “OK. We actually learn about this stuff in Year 10. We need to stop now and continue learning about the ozone layer.”

While ozone in the Earth’s atmosphere is very important and Year 8s were also interested in ozone, I felt really guilty in almost extinguishing my students’ curiosity in black holes because the syllabus said that they should learn it in Year 10 and right now they should be learning about the ozone layer. I’m sure many teachers have faced this kind of situation before but it really got me thinking on how the current education system does so much to restrict the learning of our students.

Why do we have to learn about black holes in Year 10?

To be more accurate, students in NSW learn about black holes in Year 9 or 10 (It’s this thing we call Stage 5, which is Year 9 and 10). I understand that the need to learn age-appropriate concepts. For example, many early primary school-aged students may not have the cognitive ability to tackle abstract concepts (you know, because of all the Piaget stuff). However, I don’t see why if my Year 8s want to learn about black holes (and I know they will be able to), they can’t learn about it because the syllabus says they learn it in Stage 5. When you learn swimming, your age doesn’t determine what kind of things you learn, it’s how fast you are progressing and what you are ready to learn.

Why can’t we learn about black holes and the ozone layer?

Why couldn’t I have let my students go online on their phones and look up videos and websites that helped answer their questions about black holes and share it with the class, and then continue with the ozone layer? I wanted to, but I only have 3 hours with them a week and I only see them an hour at a time. Last year I had the same class for 14 hours a week in an integrated curriculum and I would’ve let them explore black holes and then continue with ozone layer because I had the flexibility to do so. However, now I am back to a more traditional and rigid timetable where learning starts and stops with the school bell. Previously I have blogged about the challenges of implementing project based learning in such a traditional school structure. The more I try to implement project based learning or anything that builds on students’ curiosity and passion or anything that personlises their learning, the more I want to knock down the existing school structure. A few days ago, I was in a workshop with Greg Whitby on teaching and learning in a Web2.0 world. He said the timetable is the one thing that is stopping effective learning and teaching. I couldn’t agree with that point more.

Greg also talked about agile learning spaces. I have to admit when I first heard of agile learning spaces a few years ago, I just liked the look of them. The bright colours and funky furniture looked particularly attractive when you are used to 1950s furniture in classrooms. But since I’ve started PBL, I get it a bit more. So going back to the black hole scenario … In an agile learning space style of learning, Daniel would’ve presented his science news to the whole cohort of Year 8 or a mixture of students from different year groups in one large space. The ones who were interested in learning more about black holes can go with one teacher and the others can go with the other teachers to continue to learn about the ozone layer. Teaching and learning is no longer restricted to one teacher teaching 30 students. Depending on the need, you can be teaching one student or 10 students or 80 students. The space enables you to do so. There are no walls that says you have to teach 30 students at a time. There are also no bells to tell you that you need to spend 60 minutes on learning something; you take as long as you need to. The video below gives you an idea of what learning is like in an agile learning environment.

And now I don’t how to end this post. I sort of feel disillusioned. I want to knock down the walls of my classroom but realistically that can’t happen. Not just yet anyway. So when the school week starts again, it will be back to the status quo. *Sigh*

Learning about sound waves with English Language Learners

Sound waves and waves in general are concepts that I’ve found many students have difficulty understanding. These are concepts that deal with understanding how energy is transmitted from one place to another through a scientific model. Why are these concepts difficult? Firstly it is abstract. You can’t see waves. When you speak or hear music you can’t see the waves coming out from the source and travelling to your ear. You can’t see the vibrations of particles. Secondly learning about the transmission of waves comes with a lot of academic language. Here’s just a sample of academic scientific jargon you’ll hear when you sit in a lesson learning about waves:

  • Equilibrium

  • Particles

  • Transmission

  • Transfer

  • Amplitude

  • Frequency

  • Period

  • Wavelength

  • Compression

  • Rarefaction

Due to this, learning about waves is particularly challenging for students who are also English language learners. Not only do they have to deal with difficult and abstract scientific concepts, they also have to deal with the intense bombardment of academic language.

This year I have a Year 9 class who are students learning English as a second language. I didn’t want to start the topic with a waveform diagram and pointing out what is an amplitude, etc. I planned a learning sequence that will move them from concrete to abstract, and from everyday language to academic language.

The first concept I wanted them to understand is that sound is vibration, or things shaking back-and-forth very quickly. We used the good ol’ tin can phones for this. We also did an experiment where students used a vibrating tuning forks to tickle their noses and make tiny splashes with a beaker of water (I thought they would find these experiments too boring, but they absolutely loved it). Every single student left that lesson knowing that sound is caused by vibrations.

The second concept I wanted them to understand is that we can represent sounds as waves. Students used Audacity to record their voices and experiment with how the loudness and pitch of their voice affected how the sound wave looked like on Audacity. We also experimented on whether saying “Hello, My name is ____” in English and students’ first languages had a difference in pitch.

Here’s a video on Audacity. It’s a free program that can be downloaded.

Students worked out from this Audacity activity that the higher pitched their voices were the more squashy the waves were. They also worked out the louder their voices were the taller the waves. I was happy for them to use the words “squashy” and “high” to describe the waves for the time being.

The following lesson I introduced frequency and amplitude. By now the students had a conceptual understanding of the relationship between sound and vibrations, the relationship between pitch and “squashiness” and the relationship between volume and the tallness of waves. They now just had to replace “squashy” with frequency and tallness with amplitude.

I really like the strategy of teaching a concept with everyday language first and then introducing the scientific terms after students have actually understood it. Science is hard enough without a bunch of difficult words bombarding students as well.

SOLO and 21st century learning

So it has been about a week after #sologlobalchat, a TweetMeet (an online conversation on Twitter) that involved teachers from Australia, New Zealand and the UK. If you don’t know what SOLO is watch this video and read this.

From #sologlobalchat we created an Edmodo group to continue our conversations and collaboration. On that Edmodo group I shared an assessment that a colleague and I worked on for a unit of work based on SOLO.

For Part 2 we came up with some questions that will guide students’ evaluation of an existing public health campaign. When I uploaded it onto Edmodo, a teacher called Craig Perry from Christchurch, New Zealand, modified the part into a SOLO exploded map. Not only is the exploded map more visually appealing than a bunch of questions typed up on a sheet (which is essentially what I had at the start), but the exploded map also classifies each question into a SOLO level. (Note that Craig and I have never met. This once again shows how generous the teaching profession is.)

The exploded map demonstrates one of the main reasons why I love SOLO. SOLO lets teachers take a step back and analyse whether they are helping students develop higher order thinking skills. When we talk about 21st learning, we often criticise how traditional school tasks can be completed by students using Google. Using SOLO can help teachers overcome this. If a task only requires students to work the unistructural, multistructural and sometimes even the relational level, can be completed by Google. For something that is non-Googlable, it needs to be extended abstract.

How many of the tasks your students do are non-Googlable? Perhaps SOLO can help 🙂

Leading learning design with SOLO

A photo of resources for designing learning for new syllabus

I led my science faculty in using structured observed learning outcomes (SOLO) to design learning for the new NSW science syllabus over the past two days. Like all other NSW schools, we are spending this year preparing for the implementation of new syllabuses for the Australian Curriculum. As a faculty we felt that this was a great opportunity to evaluate the effectiveness of our current teaching and learning practices. We are using the new syllabus as a driver of change in teaching and learning.

We decided to use SOLO as the framework to design learning for the new syllabus. Why did we choose SOLO? One of the main reasons is that the Essential Secondary Science Assessment (ESSA) uses SOLO to assess students’ understanding. ESSA is a state-wide science assessment that is completed by all Year 8 students from NSW government schools. An analysis of the trend data shows we needed to work on moving students from being able to recall scientific information to making relationships with this information and then applying this information to real world situations. Another reason why we chose to use SOLO is because it makes learning visible to students and teachers when it is accompanied by learning intentions and success criteria. Learning intentions and success criteria help students focus on the purpose of learning activities rather than just merely completing work. They also help enhance students’ self regulation.

So the two days played out like this:

(1)    Getting everyone on the same page

We started the two days by analysing where our students currently are and where we want to move our students in their learning and achievements. Why SOLO was explored. We used a KWHLAQ table to do this.

 (2)    Drawing out main concepts from the syllabus

We decided to program a unit on human health and diseases first. We familiarised ourselves with the relevant sections of the syllabus and brainstormed all the concepts, ideas and facts that students needed to understand. Individually we wrote each concept, idea and fact onto post-it notes and stuck them on the whiteboard. As a team we sorted the post-it notes into logical categories.

 (3)    Classifying into SOLO categories

We then classified each concept, idea and fact into SOLO categories. We decided to have 3 SOLO categories:

  • Level 1 – unistructural and multistructural
  • Level 2 – relational
  • Level 3 – extended abstract

IMG_4162

 (4)    Assigning SOLO verbs

We assigned SOLO verbs for each concept, idea and fact.

Level 1
Uni/multistructural
Level 2
Relational
Level 3
Extended abstract
Describe
Identify
Name
List
Follow a simple procedure
Compare and contrast
Explain causes
Sequence
Analyse
Relate
Form an analogy
Apply
Criticise
Evaluate
Predict
Hypothesise
Reflect
Generate
Formulate
CreateJustify

 (5)    Creating learning intentions and success criteria

We created learning intentions and success criteria based on the verbs for each category.

 (6)    Teaching and learning activities

We split up into three teams to design teaching and learning activities that will allow students to meet the success criteria.

We also designed an assessment task gives students an authentic context to learn this unit.

What next?

We are still in the progress of completing the unit and I will share it once it is completed. Meanwhile some of our next steps will also include

  • using SOLO for feedback and feedforward
  • working with our school’s PDHPE faculty to see whether we can make this into a cross-curricular unit and assessment

It will be great to get some feedback on how we are going so far in using SOLO to design learning.