A story in 2 minutes – a multimedia activity for all subjects

My principal shared this video with me today. It’s called Our Story in 2 Minutes. The video summarises the Earth’s history from the Big Bang till now in two minutes.

This inspired me to come up with some similar story-in-2-minutes activities where students can create a video using images only to represent the development of an event. It doesn’t even have to be two minutes. It can be one minute, three minutes, however long you and your students like. A video of images can be made to sequence the events in the evolution of life on Earth, the development of our current understanding of the universe, development of the cell theory, development of our understanding of genetics … the list goes on and on and it can be used in subjects other than science.

What I like about this activity is that it’s simple and yet allows students to create and engage in deep learning that extends from a subject area and even be part of a cross-KLA activity. It’s simple for both students and teachers as it involves searching and selecting images that represents certain ideas and events and then inserting the images into a video-editing program such as Windows Movie Maker or even PowerPoint. Technology tools that don’t require a high level of technical expertise from either teachers or students and are available to most students. The activity is also simple in the sense that it does not have to take long, which can be a good activity to suggest to teachers who are concerned about being pressed for time.

To create stories in 2 minutes also allow students the opportunity to learn about digital citizenship. Can students use any images pulled from the web? Do they have to search for creative commons images? How do they acknowledge the source of images? This activity is not only about the content of a subject area.

Finally creating stories in 2 minutes can be adapted into project-based learning or provide an opportunity to create a product that can be shared with a public audience beyond the classroom. Creating a story in 2 minutes require students to first understand the content, select and justify appropriate images that best represent the content and sequence them in a logical order. It allows students to apply higher order thinking skills.

I teach in Sydney, Australia so my school year is starting in about a week’s time. I will be definitely using the story-in-2-minutes concept this year.

What will you use it for?

 

Small changes can make a huge difference

Over the past few years I have been constantly changing the way I teach due to introduction of 1:1 laptop initiatives in some classes and a continually-developing understanding of how students learn. In a lot of cases it has involved turning things upside down and completely rewriting units of work. This is tiring. Worth it but tiring. But I found out recently that small, minor changes can make a huge difference too. The Student Research Project (SRP) has been around since I was in high school. It’s an oldie but a goodie. The SRP involves students planning, doing and reporting on an experiment of their choice. It is a compulsory activity for all Year 7-10 students in NSW, Australia. Each student must do at least one SRP once in Year 7 and 8, and another one in Year 9 and 10. By doing the SRP, students learn how to design a fair experiment, a must-have skill for all scientists! See here for more info on the SRP.

It was the Year 8’s turn to do the SRP in September this year. The traditional way of doing the SRP is for students to choose an experiment, plan it, do it and then submit a written report. This year my faculty decided to revamp it and not just rehash the status quo. However this didn’t involve major changes that would stress everyone out. It involved a few tweaks that would have the most impact. Like always we gave students the choice of whatever experiment they wanted. My class were doing experiments ranging from water absorption of different types of soils to whether particular types of video games would improve people’s reaction times to using Gary’s Mod to run a simulated experiment. However instead of forcing students to do a written report, we decided to let students choose how to present their SRP findings in whatever medium they wanted. Some students still chose to submit a written report (but by sharing it as a Google document to make the feedback process more efficient) while other students chose to create Prezis or videos. Students had to justify why their chosen medium would be the most effective in communicating their findings to others. At the conclusion of the SRP, students shared their findings with their class over a two-day conference, just like real scientists.

In the presentations I would usually get students to give each other feedback (one medal and one mission) by writing it down on a piece of paper, which I will take home and collate and then give back to students. This was a really inefficient way of doing it. Students had to wait at least 24 hours to get peer feedback and it took me time to type of the students’ feedback. This time I decided to create a backchannel on Edmodo that students used to give feedback to each presenter. Students did this by using laptops. A designated student had the role of creating a post for each presenter and then the whole class will reply to that post with a medal and mission for the presenter. Doing it this way meant that the presenter got the feedback as soon as they finished presenting; they didn’t have to wait till the next day after I’ve collated the class’ feedback. Students really liked the immediacy of the feedback they got from the Edmodo backchannel. There was also one student who made a video for his SRP, but he was ill over the two days of the presentations. His video was still shown and he was able to receive feedback on it at home from his peers via the Edmodo backchannel.

A sample of the Edmodo backchannel

So just with a little of tweaking, the good ol’ SRP has been thrusted into the 21st century. I didn’t have to completely re-write it or turn it upside down. Just by adding Google docs, more student choice and Edmodo, the SRP was made a million times better for students as a learning process. From the end-of-term evaluations, many students from across all Year 8 classes identified the SRP to be their favourite activity this term because it gave them choice, it let them use technology and they learnt by doing.

Next time I’d like to have students sharing their findings with a global audience, or at least with an audience beyond their class. But one small step at a time 🙂

Student Research Project – crowd-sourcing feedback

This is a draft version of a Year 8 assessment task called the Student Research Project. It is quite a task that spans over a month where students plan, conduct, analyse and present on a scientific experiment.

This assessment task has already gone through a few feedback cycles within my school, but I’d like some feedback on it from educators, parents, scientists or anyone beyond that. The task is designed so that it caters for a range of teachers and students. For example the task leaves it up to the teacher and their students to decide HOW they will present the task (they can submit it as a traditional word-processed document or they can make a video, etc). The task can also be turned into project-based learning for those classes that have gone down that path.

Hold it right there. We learn about black holes in Year 10, not in Year 8

This term my Year 8 class has been running Science News. Science News is where each student in the class takes turns in presenting a science news item that they have found interesting. They have to showcase  the science news item in a two minute presentation. The purpose of Science News is to expose students to the latest discoveries in science. I wanted them to know that science is everywhere.

However, Science News has also taught me new things and not just scientific things. One Science News item challenged how I was designing my learning for my students and how our education system designs learning for our students. Daniel talked about new discoveries on black holes. You can read Daniel’s speech to the class here. Right after Daniel finished his speech, half of the class’ hands shot up with questions.

“What exactly are black holes?”

“What happens when you go into a black hole?”

“I heard that time slows down when go inside a black hole. Is that true?”

“If we can’t see a black hole. How do we know it is there?”

“What is a light year?”

I was really happy that my students were so enthusiastic about learning more on black holes. So what did I do? I spent about 5 minutes skimming through the basics of gravity, dark matter and the speed of light and then I said, “OK. We actually learn about this stuff in Year 10. We need to stop now and continue learning about the ozone layer.”

While ozone in the Earth’s atmosphere is very important and Year 8s were also interested in ozone, I felt really guilty in almost extinguishing my students’ curiosity in black holes because the syllabus said that they should learn it in Year 10 and right now they should be learning about the ozone layer. I’m sure many teachers have faced this kind of situation before but it really got me thinking on how the current education system does so much to restrict the learning of our students.

Why do we have to learn about black holes in Year 10?

To be more accurate, students in NSW learn about black holes in Year 9 or 10 (It’s this thing we call Stage 5, which is Year 9 and 10). I understand that the need to learn age-appropriate concepts. For example, many early primary school-aged students may not have the cognitive ability to tackle abstract concepts (you know, because of all the Piaget stuff). However, I don’t see why if my Year 8s want to learn about black holes (and I know they will be able to), they can’t learn about it because the syllabus says they learn it in Stage 5. When you learn swimming, your age doesn’t determine what kind of things you learn, it’s how fast you are progressing and what you are ready to learn.

Why can’t we learn about black holes and the ozone layer?

Why couldn’t I have let my students go online on their phones and look up videos and websites that helped answer their questions about black holes and share it with the class, and then continue with the ozone layer? I wanted to, but I only have 3 hours with them a week and I only see them an hour at a time. Last year I had the same class for 14 hours a week in an integrated curriculum and I would’ve let them explore black holes and then continue with ozone layer because I had the flexibility to do so. However, now I am back to a more traditional and rigid timetable where learning starts and stops with the school bell. Previously I have blogged about the challenges of implementing project based learning in such a traditional school structure. The more I try to implement project based learning or anything that builds on students’ curiosity and passion or anything that personlises their learning, the more I want to knock down the existing school structure. A few days ago, I was in a workshop with Greg Whitby on teaching and learning in a Web2.0 world. He said the timetable is the one thing that is stopping effective learning and teaching. I couldn’t agree with that point more.

Greg also talked about agile learning spaces. I have to admit when I first heard of agile learning spaces a few years ago, I just liked the look of them. The bright colours and funky furniture looked particularly attractive when you are used to 1950s furniture in classrooms. But since I’ve started PBL, I get it a bit more. So going back to the black hole scenario … In an agile learning space style of learning, Daniel would’ve presented his science news to the whole cohort of Year 8 or a mixture of students from different year groups in one large space. The ones who were interested in learning more about black holes can go with one teacher and the others can go with the other teachers to continue to learn about the ozone layer. Teaching and learning is no longer restricted to one teacher teaching 30 students. Depending on the need, you can be teaching one student or 10 students or 80 students. The space enables you to do so. There are no walls that says you have to teach 30 students at a time. There are also no bells to tell you that you need to spend 60 minutes on learning something; you take as long as you need to. The video below gives you an idea of what learning is like in an agile learning environment.

And now I don’t how to end this post. I sort of feel disillusioned. I want to knock down the walls of my classroom but realistically that can’t happen. Not just yet anyway. So when the school week starts again, it will be back to the status quo. *Sigh*

The challenges of PBL in a traditional school structure

I’ve been trialling project based learning for about a year. Last year I was lucky enough to have a year 7 class for 14 hours a week for 5 different subjects so I was able to easily design and implement cross-curriculuar units of work that were framed  by project based learning. This year I’m back to traditional high school teaching where I see kids for 60 minutes at a time. I had to change my game plan for project based learning. What I have found most challenging is balancing the students’ passion for learning with ‘getting through the syllabus’.

I’ve just finished a unit called ‘Sharks: Friends or Foes’, which is basically a unit on ecosystems and food webs. I modified the unit with a PBL framework. Instead of just looking at food web diagrams in a textbook or playing with interactive food webs online, students acted as scientists and produced a product for a shark scientists conference to convince the community whether sharks are our friends or foes in the midst of all the media attention on shark attacks.

The project was done throughout the unit in different stages and students also had to learn about population sampling techniques, food webs and how energy flows through ecosystems. During the unit they also had a real shark scientist talk to them.

From the results in the students’ pre-tests and post tests, all students made huge progress in their understanding of ecological relationships. On average students improved over 40% between their pre-test scores and their post-test scores.

In comparison to last year, the students’ teamwork skills and self-regulation skills have massively improved. My main challenge this year is time. PBL takes time. A lot more time than traditional teaching. The unit that ‘Sharks: Friends or Foes’ is based on is supposed to take 5 weeks maximum, but my modified PBL unit took 8 ½ weeks. There were times that I was feeling pressured to rush my students to make sure I don’t fall behind and so that I can get through the syllabus in time. Last year, I saw my students for large blocks of time (5 hours straight twice a week) and they can use these chunks of time to work on their movies, posters and other products for their projects. This year I see them for 3 separate hours a week and this lack of continuity makes the product creation process a lot more challenging.

But does it have to be this way?

This term I realised that I wished high schools did not to have separate subjects. I wish schools didn’t require students to walk in and out of classrooms like they are on a conveyor belt.

I wish every unit was cross-curricular so that subject experts can work together as a team and students can have more time to develop their passions for learning and be knowledge creators rather than just consumers. If you need 4 hours straight to work on a science/maths/geography project then you should be able to do it without being prevented by a timetable structure. Is there a reason why we need to have separate subjects? What is the reason for timetables?

I don’t have the answer or solutions to these questions, but I hope education is moving towards this direction. In the meantime I’m going to take small steps. I’ll continue with PBL with my year 8s and have already approached another faculty at my school to design and implement a cross-curricular PBL unit.

Learning in Term 3

Now that Term 3 has come to an end, I am again analysing the data from Year 7’s evaluation of their learning. Year 7s complete a weekly reflection on their learning as well as an end-of-term evaluation. Their end-of-term evaluations gives me an idea on how they feel about how I structure their learning activities so that I can adjust the next term’s learning accordingly.

For Term 3 our project based learning focus has been on newspapers. For 8 weeks, students deconstructed the language features of news articles and put together a range of articles on the Olympics, the Paralympics and other newsworthy items. Some of these articles were written in groups and some were written individually. Year 7s then selected some of these articles to put together a newspaper using Microsoft Publisher. Each news article involved students revising the article at least twice using the goals, medals and missions structure of feedback. In Term 3 we also did science experiments on Tuesdays that were based on sport science under the theme of the Olympics. For half of Term 3 the class worked with Year 6 students from Merrylands East Public School on Murder under the Microscope, an online environmental science game where students acted as forensic scientists to solve a crime involving the pollution of a catchment area. One new activity I introduced in Term 3 were weekly revision quizzes. These quizzes were essentially thirty-minute pen-and-paper-exams that tested Year 7’s understanding of concepts we have learnt during the week. However, they were allowed to refer to their books if necessary (I just think this is more realistic of real life. When in your life do you come across something you can’t do and force yourself to sit there for 30 minutes without makin any attempt on finding out how to do it. I also think it gives a purpose to students’ book work and instil in them a routine of what revision and studying looks like and feels like.) With these weekly revision quizzes, students mark each other’s work. The quiz is divided into concept areas such as algebra, language features of newspapers and scientific investigations and marks are awarded separately to each concept. Students then look at their performance for each concept area and write a short reflection on what they are good at and what they need to improve on.

So this week, Year 7s completed an end-of-term evaluation of their learning on Survey Monkey.

Term 3’s evaluation consisted of these questions:

  • What is your favourite subject?
  • What makes this subject your favourite subject? What do you like about it?
  • Rate how much you enjoy the following activities (students choose from “I enjoy it”, “I find it OK” and “I don’t enjoy it”
    • Project work
    • Science experiments
    • Maths and numeracy
    • Murder under the Microscope
    • Edmodo homework
    • Rate how much you learn from the following activities (students choose from “I learn lots from it”, “I learn some things from it” and “I barely learn anything from it”)
      • Project work
      • Science experiments
      • Maths and numeracy
      • Murder under the Microscope
      • Edmodo homework
      • Do you want to continue doing project work on Mondays and Fridays?
      • What are 3 things you have learnt from the newspaper project?
      • List 3 things you want to improve on next term.
      • If you were the teacher of 7L, what would you do to improve learning for the class?

So here are the results:

What is your favourite subject?

A pie chart of Year 7's favourite subject

I’m going to conclude by just saying it takes a lot to beat PDHPE as students’ favourite subject.

Reasons why integrated curriculum is their favourite subject

Below are some of the responses from students who chose integrated curriculum as their favourite subject:

Because we get to have fun in those classes and do interesting stuff.

 

The experiments we do and how all the subjects are put into one class.

 

It involves technology.

 

There are so many opportunities to do fun activities and showing people my work.

 

Some of the major themes from this question are that students find integrated curriculum classes “fun”. They also like using technology such as laptops and tablets for their learning, as well as having 5 subjects embedded into one class.  Some students enjoy having their work showcased on the class blog.

Rate how much you enjoy the following activities

A sector bar graph showing year 7's enjoyment rating of different activities

Rate how much you learn from the following activities

A sector bar graph showing how much year 7s learn from different activities

What are 3 things you have learnt from the newspaper project?

 A word cloud was created for students’ responses to this question where the larger the word in the word cloud, the more frequent that word appeared in the responses.

A word cloud showing what students have learnt in the newspaper project

List 3 things you want to improve on next term.

This term was the first time students wrote features of effective team work for their improvements for the following term. In previous end-of-term evaluations, students often listed relatively superficial things they’d like to improve on such as write faster or finish work faster. For this term’s evaluation, the majority of students listed features of team work skills such as listening to other students, working as a team and self control. Many students also identified specific areas of content they’d like to improve on such as algebra or types of scientific variables. This is in contrast to how they listed their improvements in previous evaluations where many students wrote umbrella terms such as numeracy or literacy.

For me, this shows an increased level of maturity in the way they assess their learning. While I can’t attribute the cause of this change to any particular strategy I’ve used, I do have a strong feeling it is to do with the goals, medals and missions structure of providing feedback in their PBL tasks and also their weekly reflections on their revision quizzes. Over a term I think most Year 7s have increased their self-awareness of their own learning.

What have I learnt?

For most of this year I have been experimenting on strategies on guiding students to become more effective learners. The PBL initiatives, the goals-medals-missions structure of feedback, the weekly revision quizzes and weekly reflections of learning have all been things aimed at allowing my students to further develop into effective learners. While I always knew that features such as working together and being self-aware of your strengths and areas for improvement are equally important as understanding subject-specific concepts, I think teaching my Year 7s for 5 different subjects have really made that clear to me. When I think back to how I structure my learning in previous years for my science classes it has always been more focused on content rather than developing students into effective learners. When I do eventually return to teaching science classes only, the way I will structure learning for those classes will be very different to how I used to structure them. Teaching an integrated curriculum has so far been one of the best professional learning I’ve had.

Action learning with Minecraft – Cycle 1

Last term I decided to undertake an action learning project to see whether using feedback will improve students’ self regulation skills in project based learning. This came from my observations that some of my  Year 7 students, who work well in traditional, teacher-centred learning activities, displayed a lot of off-task behaviours in project based learning, which included being not staying with their teams, constantly changing their minds about their projects and other actions, which resulted in a very low-quality learning artefact being produced (see my previous post for more details). This happened in their 60 second science project, where they worked in teams to create a 60 second video on an astronomical phenomenon. Their latest project was to create a model Parthenon in Minecraft where the architecture followed the golden ratio. This project was broken into 4 stages where each stage had a goal and students and I had to assess on how well they have achieved their goal in the form of medals and missions.

Based on informal classroom observations, more students were on task than the previous project. From their survey data, more students said they knew what their team’s goal was, knew how they could help their team achieve that goal, stayed with their team and were on task.

Note: The first graph shows the survey data from the 60 second science project while the second and third graphs show the data from the Minecraft Parthenon project. (Sorry, the categories have been listed backwards in surveys 2 and 3.)

student survey results for self regulation

shows the data from the Minecraft Parthenon project

shows the data from the Minecraft Parthenon project

There were also selected students who struggled with self regulation skills more than the rest of the class in the 60 second science project. Let’s call them Student A, Student B and Student C. When I compared their data, this is what it showed:

student A's survey data over time

student B's survey data over time

student C's survey data over time

When I combine the students’ survey data with my own classroom observations, I can conclude that these three students have worked a lot better during our project sessions. They weren’t “perfect” though, but they did improve. I did see them looking up their own houses on Google Maps a few times while they were meant to be working on their Minecraft Parthenons.

However, I don’t think I can just conclude that giving effective student feedback will cause students to have better self regulation skills in project based learning. There were some major differences between the 60 second science project and the Minecraft Parthenon project:

  • Duration of the project – The 60 second science project lasted 8 weeks while the Minecraft Parthenon project only took 3 weeks. Students might work more effectively in shorter-duration projects.
  • General appeal of the project – While the class in general enjoyed both projects, there was a more heightened excitement about using Minecraft. The games based learning aspect might have affected students’ work ethic. Many students are also very familiar with Minecraft, while the 60 second science project involved students learning and applying unfamiliar concepts such as scripting and storyboarding.
  • Structure of the projects – The 60 second science project involved students working in a range of learning spaces. At any one session, some students were in our main classroom, some students were in another classroom to film, some students were in another classroom so they can record audio. This created a slightly chaotic atmosphere even though it was organised chaos. In the Minecraft Parthenon project, all students were on the mezzanine level of the library. For students who are easily distracted, such an environmental difference might also affect their ability to self regulate.

I’m now coming up to cycle 2 of my action learning project. The next project will involve year 7s creating their own newspapers to report on the London Olympics. I’m staying with feedback and self regulation but will make a few changes to the way data is collected:

  • Student surveys will have additional questions that ask them how well they understood the feedback and how well they know how to act on that feedback
  • Observations from other teachers – I’d like someone else to come into the class and observe Student A, Student B and Student C as well as the rest of the class and note what they are doing at what times of the project session

Cycle 2 will begin in week 2 of Term 3 so watch this space for updates. Also watch this space for updates on how my team of science teachers have been using action learning to improve student learning in science at our school.