Cardboard games STEM challenge – what worked well and what I’d do differently next time

This year I have a Year 8 STEM elective class. It is a new course that my school is running where we build on existing syllabus outcomes in Stage 4 science, mathematics and technology mandatory. Students learn (and master) the core content in their traditional timetabled science, mathematics and technology mandatory classes and then apply it in their STEM elective. The STEM elective takes a project based learning approach with an emphasis on the design process.

In Term 1, we did the cardboard games challenge. The image below shows the project outline.

Image of project outline  - How can we create a cardboard games room for Concord High School?

We used Caine’s Arcade as our hook activity.

I chose the cardboard games project because I wanted to emphasise to my students that STEM isn’t about fancy gadgets or coding. STEM is about solving problems within parameters, with ongoing prototyping. Making games out of cardboard is also a very low-cost project, which means students can create lots of prototypes and go through many feedback cycles. This was really important in our first STEM project.

The photos below show the cardboard games the students made.

cardboard skeeball
cardboard darts
high score board made of cardboard and masking tape
cardboard pinball
cardboard skeeball
cardboard dunk shooter

So what worked well?

  • The project unpacking template that was inspired by Bianca Hewes. I found this template worked well in enabling students to engage with the project outline, identify their strengths and ask any clarifying questions. Students shared their completed templates with their team members so they can work out their group strengths and negotiate tasks based on their strengths.
  • The overall project allowed lots of differentiation and student voice. Students chose which cardboard game to create. Some students chose mechanically complex games like pinball while other students chose simpler games like skeeball. I had to guide some groups in adjusting their games throughout the project when they were not able to carry through their initial ideas. Eg. the group who wanted to make a cardboard claw machine had to adjust their game quite a few times after each prototype.
  • The ongoing prototyping and feedback as part of the design process. The project allowed students to provide feedback to each other and help each to solve problems.
  • The project presentation – We ended up presenting the project to a Year 7 group of students. While the original plan was to run the games room for the whole school, some of the cardboard games were not going to be able withstand over 1000 students playing them so we decided on one Year 7 class as this was our first project.

What would I change next time?

  • Strengthen the use of a consistent feedback protocol. For this cardboard project, I used the What Worked Well/Even Better If feedback protocol. Students gave their feedback verbally. Next time, I would have students write down their feedback so that each group can further reflect on it.
  • Strengthen the digital portfolio. I originally planned for each student to individually create a digital portfolio to record ongoing evaluations of their prototypes and how their were working as a team. This did not happen in this round of the project. We still did feedback, reflections and evaluations but it was more disjointed (done via verbal feedback and Google Doc templates) than I would’ve liked. Next time I want to test the use of a digital portfolio. I’m thinking of using SeeSaw.
  • The project presentation – Next time, I’d like to bring in an arcade games expert or someone who runs carnival games. Next time, I’d also have each student group provide a short presentation on their game and the design process they used to make each prototype before having students play the games.

Overall I am really, really proud of the effort, prototypes and end products from the Year 8s. The project gave me an opportunity to test some processes in a new elective that I can tweak for their upcoming projects, which will include pixel art, interactive posters and propeller cars.

Asking the right questions

effective questioning sketchnote

I presented at the 2017 NSW Secondary Deputy Principals Association Conference this week on embedding effective questioning into assessment for learning. According to research, teachers ask 400 questions a day, wait under 1 second for a reply from students and most of these questions are lower order questions that require students to recall facts. The research also shows that increasing the number of higher order questions leads to increases in on-task behaviour, better responses from students and more speculative thinking from students.

There are other reasons why teachers ask question, like asking a question to wake up the student daydreaming at the back of the class, or asking students to repeat instructions to an activity to make sure they know what to do. These are fine, as long as teachers know the reasons for those questions (and these types of questions do not dominate the majority of class time).

tenor

Strategic questioning is key to assessment for learning. While questioning is essential for students in all grade levels, teachers can take the opportunity of new syllabuses and school based assessment requirements for the HSC to re-think how they design and implement assessment for learning in Stage 6. However, questioning is often viewed as an intuitive skill, something that teachers “just do”. At a time when many teachers are creating new units of work and resources for the new Stage 6 syllabuses, it may be a good opportunity to look at strategic questioning and embed some quality questions and questioning techniques.

What do good questions look like?

For assessment for learning, there are two main reasons why teachers ask questions:

  1. To gather evidence for learning to inform the next step in teaching
  2. To make students think

For these questions to be effective, it depends on how the question itself is designed, how the question is asked, and how response collected and analysed, to inform the next step in teaching and learning. Here are some strategies:

Hinge questions

Hinge questions are often multiple choice questions (they don’t have to be). They are asked by the teacher to the class towards the middle of the lesson for the teacher to decide whether the class has understood the critical concepts of the lesson to move on. Hinge questions have four essential components:

  1. The question is based on a critical concept for that lesson that students must understand.
  2. Every student must respond to the question.
  3. The teacher is able to collect every student’s response and interpret the responses in under 30 seconds. (This is why many hinge questions are multiple choice).
  4. Prior to the lesson, the teacher must have decided what the teaching and learning that follows for:
    • the students who have answered correctly
    • the students who have answered incorrectly

Here is an example of a hinge question:

hinge question example

The question assesses students’ understanding of validity, reliability and accuracy in scientific investigations. Many students confuse the 3 concepts. This hinge question can be used for a lesson on investigation design where validity, reliability and accuracy have been explained. Towards the end of this explanation (typically around the middle of the lesson), this question can be asked to all students. Then the teacher can decide on the next steps for students who “get it” and those who don’t. For this question, the correct answer (key) is B. Note that the wrong answers (distractors) in a hinge question must be plausible so students do not answer correctly with the wrong thinking. A really, really good hinge question would have distractors where each distractor reveals a misconception.

Here is another example of a hinge question from Education Scotland.

hinge question maths example

For this question, the key is B. The annotated blue boxes show the wrong thinking behind each distractor.

So how do you implement hinge questions? How do you ask them so that every student responds and you can collect and interpret their responses, and decide the next step in under 30 seconds?

No hands up

The first thing to do is to create a class culture of “No Hands Up”. Students can only put up their hands to ask questions, not to answer questions. Either everyone answers or the teacher selects who answers. When the teacher selects who answers, it must be done in a random way so that everyone is accountable to answering the question. This ensures that it is not just the “Lisa Simpsons” or the daydreaming student who answers the questions. For this to happen, teachers can use mini whiteboards and a randomisation method.

Mini whiteboards can be purchased or cheaply made by laminating pieces of white paper. For hinge questions, students write down their response (A, B, C, D, etc) and holds up their whiteboard for the teacher to see when the teacher says so. This allows the teacher to scan every board (so every student’s response) to see approximately how many students have understood the critical concept. The teacher can then decide what activities they can do while intervening for those students who do not understand. The key to hinge questions is to intervene during the lesson.

As Dylan Wiliam says,

It means that you can find out what’s going wrong with students’ learning … If you don’t have this opportunity, then you’ll have to wait until you grade their work. And then, long after the students have left the classroom.

Alternatively, you can use digital tools like Plickers, Kahoot and Mentimeter. I personally find mini whiteboards the easiest to implement.

While hinge questions require everyone to respond, other questions are more suited to randomly selecting a student to respond. Teachers can use these strategies:

  • Digital random name generator from tools like Classtools and Class Dojo.
  • Writing each student’s name on paddle pop sticks and selecting a stick out of a cup

paddle pop sticks

Higher order questions

Selecting a student at random to answer is more suited to higher order questions. the key is to create and pre-plan higher order questions to take to class to avoid asking too many lower order questions. To plan a sequence of low order to higher order questions, there are numerous strategies. There are heaps of resources for using Bloom’s question stems (just Google it). The strategy I find less popular, but more accessible to students, is the Wiederhold question matrix.

question matrix

Questions are created by combining a column heading with a row heading. Eg. What is …. , Where did … , How might ….

Teachers can put a stimulus in the middle of the table for students to create their own question, like this source I found via Kate Littlejohn for Stage 6 Modern History.

question matrix history

Some sample questions include:

  • What is an ally? What is an opponent?
  • Who decides who is an ally and who is an opponent?
  • What is WWI? Where did it happen?
  • Why did WWI happen?
  • How would you decide who paid the highest price in WWI? What criteria would you use?
  • How might the numbers in each category compare if a world war happened today?

Both hinge questions and creating a sequence of questions are not easy. It is worthwhile for teachers to look at building a bank of hinge questions and higher order questions as they collaboratively create units of work and resources.

You can find more information and resources on questioning in assessment for learning here.

Wait, wait and wait

Lastly, regardless of what questions you are asking (hinge, higher order questions, questions to wake up students), remind yourself to wait. Wait at least 3 seconds for lower order questions and more than 3 seconds for higher order questions; the longer the better.

Potential of hinge questions in flipped learning

As an interesting note, I think hinge questions can be very useful in flipped learning. The hinge questions can be asked at the start of the lesson to assess who has understood the concept from the instructional videos and who hasn’t so the teacher can decide on how the rest of the lesson should run. Hinge questions can also be incorporated into the instructional video at key points so that the video continues in a certain way if students answer correctly and in another way if students answer incorrectly.

YES TV – a student-led live stream on YouTube

This week a team of of my students ran their own live stream on YouTube called YES TV. YES TV (Youth Eco Summit TV) was a live stream from the Youth Eco Summit. This summit allows students and teachers to to gain first-hand experience at how to be more sustainable at school and in their everyday lives. YES TV was an one-hour live stream on YouTube where students interviewed participants at the summit so that a global online audience can also learn about sustainability.

YES TV was a massive risk in learning for me and my students. It was one of those “say yes, then learn how to do it later” projects. YES TV was essentially a live TV talk show that students ran almost all by themselves. I have zero experience at running a live TV talk show. The students also had no experience. However, it was one of the most authentic learning experiences for all of us.

Firstly YES TV showed me and the students that we can push the boundaries and take on a challenge. So what if we didn’t know how to run a live TV talk show. We can learn how to do it. I applied everything I learnt from being in the audience of a live show called QandA a few years ago. We watched breakfast news TV clips on YouTube to learn how hosts improvise based on the guest’s responses to their questions. We devised and assigned roles. There were 2 anchors, 3 interviewers, camera operator, “audio person”, a student who held up signs like “hurry up” and “ready for next guest”, students who monitored social media feeds for online questions, a student who held up a mini whiteboard telling the on-camera crew who the next guest was, “runners” who were in charge of organising guests before they went on camera. And then me. I had no idea what my roles were called but I decided which guests were on next according to the schedule and told the kids with the signs and whiteboard what to do. These roles are probably nothing like the roles in a real live TV talk show but we pulled it off and it worked for us. The students and I were in awe that we did pull it off. YES TV proved to all of us that passion, initiative and determination enable us to rise to any challenge.

YES TV was also an authentic experience for students to learn job-ready skills. The actual live stream for YES TV was 2 hours. But a lot more other hours were spent preparing for it and this included liaising with the guests on YES TV. Students learnt how to make phone calls in a professional manner to YES TV guests (I modelled this to them first by having my phone on speaker) and writing professional emails. This might not sound like much but many students don’t know how to do these things and they’re often not taught in traditional subjects. Students involved in YES TV mentioned how they appreciated learning how to write and respond to emails in a professional manner, using formal language.

Finally for me as a teacher, YES TV provided validation for me to continue to push the boundaries and to continually seek out new learning opportunities for my students.

Science with gummy bears

Gummy bears are not only a delicious treat, they also have multiple uses in science. This term my year 9 class are completing a project called Project Mars. Project Mars is a joint project with the Powerhouse Museum where students can remotely control a Mars Rover to perform experiments on a recreated Martian surface to find out whether Mars could support life.

To collect and analyse the data from these experiments on the Martian surface, students need to learn about atoms and waves, and this is where gummy bears come in. Gummy bears have come in really handy for two experiments showing the properties of light.

(1) Gummy bears and laser experiment

Gummy bears can be used to show how light is absorbed, transmitted and reflected. This activity show why objects have different colours.

Students shined a red laser light onto red gummy bears and green gummy bears. The red light will transmit and reflect on the red gummy bears, but absorbed by the green gummy bears. Students then shined a green laser light onto red gummy bears and green gummy bears and compare the observations. This experiment makes the concept of absorption, transmission and reflection of light more real to students.

20140611-185431-68071593.jpg

(2) Gummy bear wave machine

I came across this experiment on YouTube. Gummy bears, skewers and duct tape is used to make a wave machine to demonstrate a range of properties of waves. I really like this experiment as it is a hands-on and visual way to show students properties of waves and works a lot better than skipping ropes and slinkys.

20140611-185609-68169592.jpg

 

Formative assessment with hexagons

Formative assessment is something I’ve been putting a lot more emphasis on over the past few years. I’m so sick of just relying of end-of-topic exams to gauge what students have learnt. I want my students to continuously question how they are going and make changes to their learning accordingly. This is one of the reasons that my faculty has embarked on a Structured Observed Learning Outcomes (SOLO) journey this year. One of the ways that many teachers using SOLO use to assess student learning is with SOLO hexagons.

SOLO hexagons involves the major concepts or ideas from a topic to be placed individually onto hexagons. Students then work individually or in groups to connect the hexagon concepts together and they must justify why they have made these connections. It is the justification where both the teacher and the student can assess the student’s learning. It is how students have connected the hexagons and their justification of WHY they have done it that way that allows their learning and thinking to then be assessed using the SOLO taxonomy (or not; the hexagon activity still works with no understanding of SOLO).

Here’s a video showing one way of using the SOLO hexagons in a UK science class.

Here’s an explanation of how to use SOLO hexagons from the SOLO guru, Pam Hooke.

I changed the hexagon activity slightly to suit the needs of my students. The picture shows the instructions that my students received.

instructions for hexagon activity

And here are the hexagons my students used (note that the hexagons were pre-cut for students and placed into zip lock bags with the above instruction card). My students worked in groups of 2 to 4. I used the SOLO hexagon generator to create the hexagons.

Here’s some samples of the hexagons my students made.

20140406-140303.jpg

20140406-140251.jpg

20140406-140235.jpg

Some things I noticed was that:

  • My students were all fantastic at explaining each hexagon concept
  • Some groups connected all the nervous system concepts and the endocrine system concepts together, showing they had an understanding that the nervous system and endocrine system worked together. However all the groups had the immune system concepts separate altogether. I did spend a lot of class time making it explicit that the nervous system and the endocrine system work together to control and coordinate the body. And while the students’ project was to make a fact sheet about how a particular disease/health issue affected the nervous system and the endocrine system, they seem to think that the immune system works on its own and is completely separate from the other systems.

From this activity we discussed their SOLO levels of understanding and how they can use their hexagon connections to see whether they were at a unistructural level, multistructural level, relational level or extended abstract level. Most students concluded they were at a relational level for most concepts and some thought they were extended abstract for some parts of the topic.

The SOLO hexagon activity is definitely something I will use again with my students. Now that they have done it once, the next time will run even better. Feedback from students was that they enjoyed talking about science with each other and that they learnt a lot from each other just by listening to what others had to say about each concept.

 

Giving students a say in their homework

This is probably not new but this term I’m trialling a different way of doing homework with Year 9s.

I try to make homework so it doesn’t become a workload burden for myself and my students. A lot of my students have extra-curricular activities like sport and I have had quite a few parent phone calls raising the concern between balancing their family lives and homework. I’ve also had the issue of different access to resources from home. A lot of my students love doing homework activities online, but not all of my students have internet access. To create a set of online homework activities and then another set of offline activities, for all four of my classes became too labour-intensive that there was very low return-of-investment.

So this term I’m doing something different with Year 9s. They will be given a choice in what kinds of homework they want to. The topic is on the nervous system, endocrine system and immune system.

I’ve made sure there are activities that are quite basic (like completing a table) to activities that are higher-order that require the creation of products like video. I’ve also made sure that students can choose HOW they complete their homework. They can do things electronically or on paper.

Not sure how this will go, but is worth trying. I’d love your thoughts on this, whether you’re a student, parent, teacher or anyone else.

Watch this space for updates 🙂

Creating a classroom community

Today was the first day where all students were back at school. I had my first lesson with most of my classes today. I never launch into content in the first day. I like to get to know my students first. This year however I want to go further than that and kick off the year by allowing my students to get to know each other as learners. Many of my students know each other socially, but not how they like to learn.

While I don’t have any hard data, I’ve always had the inkling that high student achievement not only depends on individual students, but how the whole class works as a group. My higher-performing classes are where individual students apply themselves more but they also get along with each other and help each other. These classes have a sense of community. Each student has a sense of belonging. They work as a team. I want this for all my classes by design, not by random luck.

So this year I used the first lesson to kick start the establishment of a class community. Students did two activities: (1) Getting to know you as a learner in 3-2-1 and (2) My perfect classroom to learn in …

Getting to know you as a learner in 3-2-1

Students paired up and interviewed each other on 3 of their favourite things about science, 2 things they find hard about science and 1 thing they want the teacher to know to help them learn the best that they can.

For larger classes, I asked some students to share their responses and then collected their interview sheets to look at later. For smaller classes, all students shared their responses and they were tallied so that students can see what they have in common with other students in terms of learning. Here’s an example from my Year 11 Senior Science class.

photo of tallied results of 3-2-1 activity

My perfect classroom to learn in …

This activity is used to establish classroom expectations where all students get a say. In pairs students brainstorm what their perfect classroom is like. In their perfect classroom what are they doing as students? What are other students doing? What is the teacher doing? All responses are collated on the board and classroom expectations are established.

photo of perfect classroom results from year 11

I know some teachers will think this is a ‘soft’ approach and that I should lay down the law instead and let students know who is boss. But I much prefer this way. I really want to focus on developing positive learning relationships amongst students as I strongly believe this will lead to better learning and achievement.

 

My 4 goals for 2014

an image of two people drawing targets

In New South Wales, Australia, the 2014 school year is just about to start so I thought I’d share with you my 4 professional goals for 2014.

Goal #1 – Keeping science real

2013 was the year where I started the journey of connecting my students with current, practising Australian scientists. This was a response to our students’ survey responses that they did not know many careers or jobs that science can lead them to. They also did not know what scientists actually do. Many students have accountants, tradespeople, bankers, etc within their families or family friends but students often do not have exposure to scientists in their everyday lives (ask a student to name a scientist and they’ll still tell you Isaac Newton or Albert Einstein; they rarely name a living scientist). We wanted to make science real in the sense that we can put real people’s faces to what the students learn in the classroom. So in 2013 our school connected with Scientists and Mathematicians in Schools, where we are now partnered with scientist Melina Georgousakis. Melina has already spoken to our Year 8s and 9s on her journey to becoming a scientist, what she does in her job and explained how the immune system and vaccinations work (that’s her area of expertise). In our end-of-topic survey, a lot of our year 9s listed Melina’s visit as the best activity of the topic. In their words the best part of the topic was “when the lady came in to talk about vaccines”. In 2014 we have plans for our Year 12 Biology students to work with Melina when they explore the immune system more deeply.

2014 will also be the year where I want to utilise social media and technology to connect students with scientists, not just in Australia but from around the world. In 2013 social media led me to connect with a postgraduate student called Ash from the University of Technology, Sydney, where he came to the school and spoke to Year 8s about his work with sharks (Year 8s were learning about the role of sharks in the ecosystem and how removing sharks as apex predators impact on the ecosystem). We also connected with Dr Mel Thompson from Deakin University and Dr Karl via Skype. In 2014 I am hoping to expand to using Twitter to connect with my students with scientists. I want to create a class Twitter account for my students and connect with scientists on Twitter. There’s so many of them such as @realscientists and Dr Cameron Webb.

Goal #2 – Embed science communication into my teaching

I was very privileged to be involved in the UTS Summer School this year where I worked with Christy, a former Questacon presenter (a science communicator who does science shows for children). She re-emphasised to me the importance of designing learning that drives students’ curiosity and create learning experiences that are memorable. One of my biggest gripes with science education is that it uses flash-bang experiments inappropriately. You hear lots of students say they just want to do pracs. You hear a lot of teachers say that all students want to do are pracs. A lot of the times I think showy experiments are wasted at school as they only serve as entertainment. Christy re-emphasised to me that showy experiments need to be set up in a way that drives students to want to know the science WHY something has happened and the journey to understanding they experience must be memorable. This can mean turning explanations into stories, plays, musical items.

One of the ideas I have this year is to have a science communication project where students work in small groups and become science communicators themselves where they design and perform an act that explains a scientific concept. If I could I’d like to make this a cross-curricular project with Drama.

Goal #3 – Making learning, thinking and understanding visible

This year is where our faculty applies the Structured Observed Learning Framework (SOLO) for all students in Year 9. We have used this year’s implementation of the new syllabus for the Australian Curriculum as a drive for this change. See this previous post for more details. The challenge (not so much a goal) will be to evaluate the impact on student learning.

Goal #4 – A better work/life balance

Over the last few years I realise that looking after yourself is a one of the most important jobs for teachers. After reading this post on 10 tips for slowing down, I really want to make sure that my entire faculty’s wellbeing is well looked after this year. I tend to be someone who doesn’t know when to stop. I feel guilty when I’m not doing work related to school. When I’m relaxing it feels like I’m doing some kind of injustice to my students’ education. I love my job but I’m no use to my students if I burn out. From the post on 10 tips for slowing down, I want to make these changes:

  • Allocate time to opening and closing meetings

Schools are such busy places that many teachers schedule meetings right on bell times so that we are rushing from one place to another. This year I want meetings where people are now running from their classrooms, crashing down and then expected to immediately adjust their mindframes. I’m hoping that simple things like having meetings start 5-10 minutes after the bell will avoid that rush feeling that make people stress.

  • Make time to eat

Eating recess and lunch is my other goal for wellbeing this year. While this seems self-explanatory, I know many teachers don’t eat, or sit down, or even visit the bathroom during school hours because there’s just so much to do. I’m not sure how successful I’ll be at this but this year I want to reduce the number of times where I eat my sandwich while driving home.

A story in 2 minutes – a multimedia activity for all subjects

My principal shared this video with me today. It’s called Our Story in 2 Minutes. The video summarises the Earth’s history from the Big Bang till now in two minutes.

This inspired me to come up with some similar story-in-2-minutes activities where students can create a video using images only to represent the development of an event. It doesn’t even have to be two minutes. It can be one minute, three minutes, however long you and your students like. A video of images can be made to sequence the events in the evolution of life on Earth, the development of our current understanding of the universe, development of the cell theory, development of our understanding of genetics … the list goes on and on and it can be used in subjects other than science.

What I like about this activity is that it’s simple and yet allows students to create and engage in deep learning that extends from a subject area and even be part of a cross-KLA activity. It’s simple for both students and teachers as it involves searching and selecting images that represents certain ideas and events and then inserting the images into a video-editing program such as Windows Movie Maker or even PowerPoint. Technology tools that don’t require a high level of technical expertise from either teachers or students and are available to most students. The activity is also simple in the sense that it does not have to take long, which can be a good activity to suggest to teachers who are concerned about being pressed for time.

To create stories in 2 minutes also allow students the opportunity to learn about digital citizenship. Can students use any images pulled from the web? Do they have to search for creative commons images? How do they acknowledge the source of images? This activity is not only about the content of a subject area.

Finally creating stories in 2 minutes can be adapted into project-based learning or provide an opportunity to create a product that can be shared with a public audience beyond the classroom. Creating a story in 2 minutes require students to first understand the content, select and justify appropriate images that best represent the content and sequence them in a logical order. It allows students to apply higher order thinking skills.

I teach in Sydney, Australia so my school year is starting in about a week’s time. I will be definitely using the story-in-2-minutes concept this year.

What will you use it for?

 

Learning about SOLO – using self regulation and feedback to increase student achievement

This year my faculty have been designing units of work for the new NSW science syllabus for the Australian Curriculum with the Structured Observed Learning Outcome (SOLO) framework.(If you don’t know what SOLO is, watch this video for a crash course) The reason why we are investing quite heavily into SOLO is because as teachers, we know that self-regulation and quality feedback are the two of the most effective elements in increasing student achievement. SOLO, with its associated learning intentions and success criteria, will allow our faculty to develop our students’ self regulation skills and further improve the quality of teacher feedback and peer feedback.

For most of the year, we have been designing learning with the SOLO framework so that each series of lessons have learning intentions and success criteria catergorised  by the different SOLO levels of thinking and understanding. A couple of weeks ago, we went a step further. The whole faculty sat down and designed an agreed approach to how we will use these learning intentions and success criteria. As a team, we decided learning intentions, success criteria and SOLO were examples of best practice, but we need to ensure that it filters down to every individual student. We agreed that learning intentions, success criteria and SOLO must be high visible and evident in everyday teacher practice for it to have maximum impact on student achievement.

As a team we decided on the following for communicating learning intentions and success criteria to students:

  • At the start of a topic, students are given a list of the learning intentions and success criteria for the whole topic so they know where they are headed before they start learning about the topic.
  • Each lesson will have the specific learning intentions and success criteria displayed. This can be written on the board, or displayed via a data projector or interactive whiteboard.
  • The teacher will explain the learning intentions and success criteria to students at the start of the lesson.
  • At the last 10 minutes of the lesson, students are to reflect on whether they have achieved the success criteria for the lesson and what they need to do next to be successful.

As a team we also agreed that we need to teach students about SOLO. We have designed different activities for students to learn about SOLO. Here’s one of the activities

As a team we also agreed to providing student feedback using the SOLO framework.

What we hope to see are:

  • Students and teachers using a common language to discuss levels of thinking and understanding
  • Students and teachers using SOLO as a way to see current levels of thinking and learning and where that thinking and learning needs to head
  • More students moving from a fixed mindset to a growth mindset. Many students have a mindset that they are “not good” at science. We want our students to realise that to be good at science, there needs to be a certain level of thinking and learning that can be achieved with effort, as opposed to natural abilities. It’s part of making learning and thinking visible.

Our faculty has also devised a draft plan to evaluate the impact of SOLO on students’ achievements and mindsets, with help from a university academic. So watch this space for more updates on our SOLO journey.