Another chapter in my teaching

Tomorrow I will be starting another chapter in my teaching journey. I will be starting a new role as Head Teacher Secondary Studies at Concord High School. It is the first school I will be moving to where I’m not an early career teacher but as an experienced teacher and leader. However, all job changes come with challenges regardless of experience. I will have new relationships to establish with students, colleagues, parents and the community. There are new administration processes to get use to like roll marking, printing, new timetable times to remember, etc. These are some of the more specific teaching challenges for me at my new school.

Moving to a bigger school

My previous school was at just the size where all the science teachers had their own classrooms. Many of my learning routines and teaching strategies has been developed with the assumption of having my own learning space. My new school has a much larger student population so learning spaces are shared and I will be in multiple spaces each day. Things like scaffolds and project timelines on the wall will need to be adapted. I’ve already created new sets of formative assessment cards that are smaller and easier to carry around the school. At my previous schools, I used traffic light cups and A4 sized multiple choice cards that stayed in the classroom.

Teaching a new subject

At my new school I will be teaching Year 11 and 12 chemistry. I’m approved to teach chemistry but did not teach it at my previous schools where I mainly taught physics and senior science. I’m really looking forward to this as I love learning new content.

I am really looking forward to this change but also a bit nervous. What are your tips on starting at a new school?

Learning with real scientists

Earlier this year, I wrote a post on my goals for 2014. My goal #1 was  to keep science real by connecting my students with real scientists. We regularly hear that STEM (science, technology, engineering and maths) will be essential to our economic future and hence it is vital to engage all of our students in STEM. However, there are many statistics that our students are switched off from STEM. From surveys in my own school, many students say they do not want to pursue post-compulsory studies of science because they don’t know what kind of careers science will lead them to. Ask any student what a scientist does and they will most likely give a very narrow, stereotypical view. Like I said in my previous post, most students will know an accountant, a plumber, a builder, a lawyer, but they are very unlikely to know a scientist.

So for the past year I have gotten my school in a program run by the CSIRO called Scientists and Mathematicians in Schools (SMIS). SMIS pairs a school with a practising scientist (or mathematician) who will work with students, teachers and schools on a range of activities from talks about science as a career to running lessons on specific content. My school’s partner scientist is Dr Melina Georgousakis, a scientist specialising in immunology and a government advisers on vaccinations. In a year she has done two general talks on what it’s like to be a scientist, one specific talk on how vaccinations work to Year 9s (really useful as it was held a week before students were scheduled to receive vaccinations) and a lesson on how the immune system works with Year 12 Biology students. My school were also lucky enough to have Dr Cameron Webb speak to them about research on mosquitoes and mosquito-borne diseases. Cameron even brought in a range of dead mosquitoes for students to examine under  the microscope. It is a great example of how scientists can work with schools to provide learning opportunities for students that would otherwise be difficult to organise.

Dr Melina explaining how the immune system works with Year 12 Biology students.

Dr Melina explaining how the immune system works with Year 12 Biology students.

Dr Cameron Webb sharing his work and life as a scientist with Year 9 students.

Dr Cameron Webb sharing his work and life as a scientist with Year 9 students.

Students examining mosquitoes under the microscope in a lesson with Dr Cameron Webb.

Students examining mosquitoes under the microscope in a lesson with Dr Cameron Webb.

While utilising social media and web conferencing tools are useful to connect students and scientists with ease, there is nothing like having a real scientist connect and work with students in the flesh. Since my school’s involvement with SMIS, our students are more aware of careers in science (as shown in our student evaluation surveys) with some students being inspired to work in the fields of our partner scientists. The SMIS program has done wonders in helping to lift the profile of science. It is vital that students can refer to real faces when they are talking about what scientists do and science as a career. It is also essential that students hear and see first-hand the diverse things that scientists do in their day-to-day jobs.

If you’re in an Australian school, I highly recommend contacting CSIRO and being involved in their SMIS program.

Giving students a say in their homework

This is probably not new but this term I’m trialling a different way of doing homework with Year 9s.

I try to make homework so it doesn’t become a workload burden for myself and my students. A lot of my students have extra-curricular activities like sport and I have had quite a few parent phone calls raising the concern between balancing their family lives and homework. I’ve also had the issue of different access to resources from home. A lot of my students love doing homework activities online, but not all of my students have internet access. To create a set of online homework activities and then another set of offline activities, for all four of my classes became too labour-intensive that there was very low return-of-investment.

So this term I’m doing something different with Year 9s. They will be given a choice in what kinds of homework they want to. The topic is on the nervous system, endocrine system and immune system.

I’ve made sure there are activities that are quite basic (like completing a table) to activities that are higher-order that require the creation of products like video. I’ve also made sure that students can choose HOW they complete their homework. They can do things electronically or on paper.

Not sure how this will go, but is worth trying. I’d love your thoughts on this, whether you’re a student, parent, teacher or anyone else.

Watch this space for updates 🙂

A story in 2 minutes – a multimedia activity for all subjects

My principal shared this video with me today. It’s called Our Story in 2 Minutes. The video summarises the Earth’s history from the Big Bang till now in two minutes.

This inspired me to come up with some similar story-in-2-minutes activities where students can create a video using images only to represent the development of an event. It doesn’t even have to be two minutes. It can be one minute, three minutes, however long you and your students like. A video of images can be made to sequence the events in the evolution of life on Earth, the development of our current understanding of the universe, development of the cell theory, development of our understanding of genetics … the list goes on and on and it can be used in subjects other than science.

What I like about this activity is that it’s simple and yet allows students to create and engage in deep learning that extends from a subject area and even be part of a cross-KLA activity. It’s simple for both students and teachers as it involves searching and selecting images that represents certain ideas and events and then inserting the images into a video-editing program such as Windows Movie Maker or even PowerPoint. Technology tools that don’t require a high level of technical expertise from either teachers or students and are available to most students. The activity is also simple in the sense that it does not have to take long, which can be a good activity to suggest to teachers who are concerned about being pressed for time.

To create stories in 2 minutes also allow students the opportunity to learn about digital citizenship. Can students use any images pulled from the web? Do they have to search for creative commons images? How do they acknowledge the source of images? This activity is not only about the content of a subject area.

Finally creating stories in 2 minutes can be adapted into project-based learning or provide an opportunity to create a product that can be shared with a public audience beyond the classroom. Creating a story in 2 minutes require students to first understand the content, select and justify appropriate images that best represent the content and sequence them in a logical order. It allows students to apply higher order thinking skills.

I teach in Sydney, Australia so my school year is starting in about a week’s time. I will be definitely using the story-in-2-minutes concept this year.

What will you use it for?

 

3 reasons why students are switching off science

There is a decline in student interest in science. Just type “students decline science” and hundreds of articles will come up of students not choosing to study science in post-compulsory schooling in countries like Australia, USA and the UK. At a time where technology is rapidly increasing and the world is facing issues like climate change, rapid rates of extinction, water shortage and food shortage, it is worrying to see students switching off science.

What I find more concerning is my observations that kids love watching science YouTube channels at home in their own time, but they are not enjoying school science. Something is wrong. While the reasons below for why students are switching off science are not validated by any research data, they are inklings that I have based on observations of students and numerous student surveys completed at my school on their engagement in science.

Reason #1 – Science teachers rely too much on whiz-bang experiments to make science interesting

I think every science teacher is guilty of this. I certainly am. We often use showy experiments for entertainment to keep students engaged. Instead of promoting our subject as intrinsically interesting, we use colourful and bubbly experiments to “trick” students into liking science. How many times do we have students walk into a science lab and ask “are we doing an experiment today” and groan when the answer is no. Of course experiments have a place in science, but science isn’t about setting things on fire or making things explode. Science is a way of thinking and aligns with humans’ natural curiosity of understanding of the world around us. I think we have pushed science as a subject of fire and explosions for so long that this is what students expect and they are disappointed when a unit of work or a series of lessons do not have experiments.

Reason #2 – Science lessons often do not allow all students to experience some success

In NSW, Australia, Year 8 students do a state-wide test called Essential Secondary Science Assessment (ESSA). At the end of ESSA, students are asked to rank their favourite subjects. Since 2006, year after year the results show students like PDHPE and Visual Art the most. My gut feeling is that these subjects allow ALL students to experience some success. In Visual Art, it doesn’t matter if you are a not-so-good painter or if you are as brilliant as Picasso, every single student is able to produce an artwork, which is showcased. Same with PDHPE, it doesn’t matter how bad or good you are at sport, every single student have been part of a team that has won a game and experienced the excitement of success. Not so in science. In many science lessons, students don’t produce anything that can be showcased. Only a handful of student who are “good” at science feel success. A lot of students think they are “bad” at science. This is one of the reasons why I’m a fan of project based learning (PBL). PBL enables students to create a product that shows their learning and they showcase that product to an authentic audience. This give students a sense of success.

Reason #3 – Students don’t know the careers that science can lead to

Not many students see scientists in their everyday lives. They see bankers, accountants, lawyers but they rarely see scientists or associate jobs with science. In the surveys at my school, the most common reason given for not wanting to study science in post-compulsory schooling is that they don’t need science for their job or career. While we as science teachers know that many jobs and careers require some understanding of science, do our students know? Do we link our students to current practicing scientists so they can what they learn in school is actually used in people’s jobs in real life?

At my school we have been pushing for connections with university pHd students and current scientists. Through the University of Technology, Sydney (UTS), our students have been lucky enough to go to the university regularly and hear about current research conducted pHd students and meet scientists face-to-face and know that science can lead to a fulfilling career. We have utlised the scientists in schools program to have a scientist come to talk to our students about what she does in her everyday job and why finds her job fun and rewarding. We also ask parents to come to school and speak to our students. This year, we had a parent who works in the communications industry speak to our students about his job, how it requires an understanding of energy transmission and waves and how much he loves his job.

A marine biologist specialising in sharks speak to Year 8s about this job and why he loves being a scientist.

A marine biologist specialising in sharks speak to Year 8s about this job and why he loves being a scientist.

And has all this gotten results? Many of our year 10 students apply to attend UTS summer school where they can choose from film, design, science, IT and health over the Christmas holidays. In previous years I have struggled to get any students to apply for the science summer school. Everyone wanted to film and design. After a couple of years of connecting students with university science students and real scientists, we have 12 students apply for science summer school this year.

As we are entering the new syllabus for the Australian Curriculum in NSW, it is time that science teachers re-think HOW we teach science and how can we work with the scientific community to increase student engagement in science.